- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002000001000000
- More
- Availability
-
12
- Author / Contributor
- Filter by Author / Creator
-
-
Li, Boyi (3)
-
Pavone, Marco (2)
-
Wang, Yan (2)
-
You, Yurong (2)
-
Campbell, Mark (1)
-
Cao, Yulong (1)
-
Chao, Wei-Lun (1)
-
Chen, Xiangyu (1)
-
Cho, Jang Hyun (1)
-
Datta, Siddhartha (1)
-
Feng, Dan (1)
-
Fu, Dengpan (1)
-
Hariharan, Bharath (1)
-
Ivanovic, Boris (1)
-
Kraehenbuehl, Philipp (1)
-
Liu, Zhenzhen (1)
-
Luo, Katie Z (1)
-
Polavaram, Adhitya (1)
-
Ren, Wenqi (1)
-
Schmerling, Edward (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 24, 2026
-
Chen, Xiangyu; Liu, Zhenzhen; Luo, Katie Z; Datta, Siddhartha; Polavaram, Adhitya; Wang, Yan; You, Yurong; Li, Boyi; Pavone, Marco; Chao, Wei-Lun; et al (, Advances in Neural Information Processing Systems 37 (NeurIPS 2024))Ensuring robust 3D object detection and localization is crucial for many applications in robotics and autonomous driving. Recent models, however, face difficulties in maintaining high performance when applied to domains with differing sensor setups or geographic locations, often resulting in poor localization accuracy due to domain shift. To overcome this challenge, we introduce a novel diffusion-based box refinement approach. This method employs a domain-agnostic diffusion model, conditioned on the LiDAR points surrounding a coarse bounding box, to simultaneously refine the box’s location, size, and orientation. We evaluate this approach under various domain adaptation settings, and our results reveal significant improvements across different datasets, object classes and detectors. Our PyTorch implementation is available at https://github.com/cxy1997/DiffuBox.more » « lessFree, publicly-accessible full text available December 15, 2025
-
Li, Boyi; Ren, Wenqi; Fu, Dengpan; Tao, Dacheng; Feng, Dan; Zeng, Wenjun; Wang, Zhangyang (, IEEE Transactions on Image Processing)
An official website of the United States government
